3.214 \(\int \tan ^m(c+d x) \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx\)

Optimal. Leaf size=159 \[ \frac {a (A-i B) \sqrt {1+i \tan (c+d x)} \tan ^{m+1}(c+d x) F_1\left (m+1;\frac {1}{2},1;m+2;-i \tan (c+d x),i \tan (c+d x)\right )}{d (m+1) \sqrt {a+i a \tan (c+d x)}}+\frac {2 B \sqrt {a+i a \tan (c+d x)} \tan ^m(c+d x) (-i \tan (c+d x))^{-m} \, _2F_1\left (\frac {1}{2},-m;\frac {3}{2};i \tan (c+d x)+1\right )}{d} \]

[Out]

2*B*hypergeom([1/2, -m],[3/2],1+I*tan(d*x+c))*(a+I*a*tan(d*x+c))^(1/2)*tan(d*x+c)^m/d/((-I*tan(d*x+c))^m)+a*(A
-I*B)*AppellF1(1+m,1/2,1,2+m,-I*tan(d*x+c),I*tan(d*x+c))*(1+I*tan(d*x+c))^(1/2)*tan(d*x+c)^(1+m)/d/(1+m)/(a+I*
a*tan(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.37, antiderivative size = 159, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 36, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.194, Rules used = {3601, 3564, 135, 133, 3599, 67, 65} \[ \frac {a (A-i B) \sqrt {1+i \tan (c+d x)} \tan ^{m+1}(c+d x) F_1\left (m+1;\frac {1}{2},1;m+2;-i \tan (c+d x),i \tan (c+d x)\right )}{d (m+1) \sqrt {a+i a \tan (c+d x)}}+\frac {2 B \sqrt {a+i a \tan (c+d x)} \tan ^m(c+d x) (-i \tan (c+d x))^{-m} \, _2F_1\left (\frac {1}{2},-m;\frac {3}{2};i \tan (c+d x)+1\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[Tan[c + d*x]^m*Sqrt[a + I*a*Tan[c + d*x]]*(A + B*Tan[c + d*x]),x]

[Out]

(a*(A - I*B)*AppellF1[1 + m, 1/2, 1, 2 + m, (-I)*Tan[c + d*x], I*Tan[c + d*x]]*Sqrt[1 + I*Tan[c + d*x]]*Tan[c
+ d*x]^(1 + m))/(d*(1 + m)*Sqrt[a + I*a*Tan[c + d*x]]) + (2*B*Hypergeometric2F1[1/2, -m, 3/2, 1 + I*Tan[c + d*
x]]*Tan[c + d*x]^m*Sqrt[a + I*a*Tan[c + d*x]])/(d*((-I)*Tan[c + d*x])^m)

Rule 65

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((c + d*x)^(n + 1)*Hypergeometric2F1[-m, n +
 1, n + 2, 1 + (d*x)/c])/(d*(n + 1)*(-(d/(b*c)))^m), x] /; FreeQ[{b, c, d, m, n}, x] &&  !IntegerQ[n] && (Inte
gerQ[m] || GtQ[-(d/(b*c)), 0])

Rule 67

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Dist[((-((b*c)/d))^IntPart[m]*(b*x)^FracPart[m])/
(-((d*x)/c))^FracPart[m], Int[(-((d*x)/c))^m*(c + d*x)^n, x], x] /; FreeQ[{b, c, d, m, n}, x] &&  !IntegerQ[m]
 &&  !IntegerQ[n] &&  !GtQ[c, 0] &&  !GtQ[-(d/(b*c)), 0]

Rule 133

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((e_) + (f_.)*(x_))^(p_), x_Symbol] :> Simp[(c^n*e^p*(b*x)^(m +
 1)*AppellF1[m + 1, -n, -p, m + 2, -((d*x)/c), -((f*x)/e)])/(b*(m + 1)), x] /; FreeQ[{b, c, d, e, f, m, n, p},
 x] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[c, 0] && (IntegerQ[p] || GtQ[e, 0])

Rule 135

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((e_) + (f_.)*(x_))^(p_), x_Symbol] :> Dist[(c^IntPart[n]*(c +
d*x)^FracPart[n])/(1 + (d*x)/c)^FracPart[n], Int[(b*x)^m*(1 + (d*x)/c)^n*(e + f*x)^p, x], x] /; FreeQ[{b, c, d
, e, f, m, n, p}, x] &&  !IntegerQ[m] &&  !IntegerQ[n] &&  !GtQ[c, 0]

Rule 3564

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dis
t[(a*b)/f, Subst[Int[((a + x)^(m - 1)*(c + (d*x)/b)^n)/(b^2 + a*x), x], x, b*Tan[e + f*x]], x] /; FreeQ[{a, b,
 c, d, e, f, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3599

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*B)/f, Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x
]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && EqQ[A*b + a*B,
 0]

Rule 3601

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(A*b + a*B)/b, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n, x]
, x] - Dist[B/b, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(a - b*Tan[e + f*x]), x], x] /; FreeQ[{a, b
, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[A*b + a*B, 0]

Rubi steps

\begin {align*} \int \tan ^m(c+d x) \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx &=-\left ((-A+i B) \int \tan ^m(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx\right )+\frac {(i B) \int \tan ^m(c+d x) (a-i a \tan (c+d x)) \sqrt {a+i a \tan (c+d x)} \, dx}{a}\\ &=\frac {(i a B) \operatorname {Subst}\left (\int \frac {x^m}{\sqrt {a+i a x}} \, dx,x,\tan (c+d x)\right )}{d}+\frac {\left (a^2 (i A+B)\right ) \operatorname {Subst}\left (\int \frac {\left (-\frac {i x}{a}\right )^m}{\sqrt {a+x} \left (-a^2+a x\right )} \, dx,x,i a \tan (c+d x)\right )}{d}\\ &=\frac {\left (i a B (-i \tan (c+d x))^{-m} \tan ^m(c+d x)\right ) \operatorname {Subst}\left (\int \frac {(-i x)^m}{\sqrt {a+i a x}} \, dx,x,\tan (c+d x)\right )}{d}+\frac {\left (a^2 (i A+B) \sqrt {1+i \tan (c+d x)}\right ) \operatorname {Subst}\left (\int \frac {\left (-\frac {i x}{a}\right )^m}{\sqrt {1+\frac {x}{a}} \left (-a^2+a x\right )} \, dx,x,i a \tan (c+d x)\right )}{d \sqrt {a+i a \tan (c+d x)}}\\ &=\frac {a (A-i B) F_1\left (1+m;\frac {1}{2},1;2+m;-i \tan (c+d x),i \tan (c+d x)\right ) \sqrt {1+i \tan (c+d x)} \tan ^{1+m}(c+d x)}{d (1+m) \sqrt {a+i a \tan (c+d x)}}+\frac {2 B \, _2F_1\left (\frac {1}{2},-m;\frac {3}{2};1+i \tan (c+d x)\right ) (-i \tan (c+d x))^{-m} \tan ^m(c+d x) \sqrt {a+i a \tan (c+d x)}}{d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [F]  time = 4.22, size = 0, normalized size = 0.00 \[ \int \tan ^m(c+d x) \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx \]

Verification is Not applicable to the result.

[In]

Integrate[Tan[c + d*x]^m*Sqrt[a + I*a*Tan[c + d*x]]*(A + B*Tan[c + d*x]),x]

[Out]

Integrate[Tan[c + d*x]^m*Sqrt[a + I*a*Tan[c + d*x]]*(A + B*Tan[c + d*x]), x]

________________________________________________________________________________________

fricas [F]  time = 0.71, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {2} {\left ({\left (A - i \, B\right )} e^{\left (3 i \, d x + 3 i \, c\right )} + {\left (A + i \, B\right )} e^{\left (i \, d x + i \, c\right )}\right )} \left (\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}\right )^{m} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^m*(a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x, algorithm="fricas")

[Out]

integral(sqrt(2)*((A - I*B)*e^(3*I*d*x + 3*I*c) + (A + I*B)*e^(I*d*x + I*c))*((-I*e^(2*I*d*x + 2*I*c) + I)/(e^
(2*I*d*x + 2*I*c) + 1))^m*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))/(e^(2*I*d*x + 2*I*c) + 1), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (B \tan \left (d x + c\right ) + A\right )} \sqrt {i \, a \tan \left (d x + c\right ) + a} \tan \left (d x + c\right )^{m}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^m*(a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*tan(d*x + c) + A)*sqrt(I*a*tan(d*x + c) + a)*tan(d*x + c)^m, x)

________________________________________________________________________________________

maple [F]  time = 3.89, size = 0, normalized size = 0.00 \[ \int \left (\tan ^{m}\left (d x +c \right )\right ) \sqrt {a +i a \tan \left (d x +c \right )}\, \left (A +B \tan \left (d x +c \right )\right )\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)^m*(a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x)

[Out]

int(tan(d*x+c)^m*(a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (B \tan \left (d x + c\right ) + A\right )} \sqrt {i \, a \tan \left (d x + c\right ) + a} \tan \left (d x + c\right )^{m}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^m*(a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x, algorithm="maxima")

[Out]

integrate((B*tan(d*x + c) + A)*sqrt(I*a*tan(d*x + c) + a)*tan(d*x + c)^m, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int {\mathrm {tan}\left (c+d\,x\right )}^m\,\left (A+B\,\mathrm {tan}\left (c+d\,x\right )\right )\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(c + d*x)^m*(A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^(1/2),x)

[Out]

int(tan(c + d*x)^m*(A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {i a \left (\tan {\left (c + d x \right )} - i\right )} \left (A + B \tan {\left (c + d x \right )}\right ) \tan ^{m}{\left (c + d x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)**m*(a+I*a*tan(d*x+c))**(1/2)*(A+B*tan(d*x+c)),x)

[Out]

Integral(sqrt(I*a*(tan(c + d*x) - I))*(A + B*tan(c + d*x))*tan(c + d*x)**m, x)

________________________________________________________________________________________